Code: 20CS3303

II B.Tech - I Semester – Regular / Supplementary Examinations DECEMBER 2023

COMPUTER ORGANIZATION AND ARCHITECTURE (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks			
UNIT-I								
1	a)	Build a digital circuit that performs	L3	CO2	7 M			
		arithmetic micro operations.						
	b)	With the help of block diagram, explain a	L2	CO2	7 M			
		4-bit binary adder.						
OR								
2	a)	What is the need of a common bus system?	L3	CO2	7 M			
		Draw and explain the diagram of bus system						
		constructed using multiplexers.						
	b)	Discuss in details various types of shift	L2	CO2	7 M			
		micro operations.						
UNIT-II								
3	a)	Construct and explain a flow chart for	L3	CO2	7 M			
		Instruction cycle.						

	1.	List and avaloin different types of commuter	Τ 1	CO2	7 1/
	b)	List and explain different types of computer	L4	CO2	7 M
		instructions. Also provide their formats.			
	1	OR			
4	a)	List and explain the register reference	L2	CO2	7 M
		instructions.			
	b)	Describe various steps involves when an	L2	CO2	7 M
		interrupt occur.			
		,			
		UNIT-III			
5	a)	Explain different types of addressing modes.	L2	CO3	7 M
	b)	Develop a program to execute	L3	CO3	7 M
		Y=(A-B)/(C+D*E) using one-address,			
		two-address and three-address instructions.			
		OR			
6	a)	Illustrate various data transfer and	L2	CO3	7 M
		manipulation instructions.			
	b)	List and explain conditional branch	L4	CO3	7 M
		instructions.			
		UNIT-IV			
7	a)	Discuss the hardware implementation of	L3	CO2	7 M
		signed-magnitude addition and subtraction.			
	b)	Draw and explain the implementation of	L4	CO2	7 M
		Booth's multiplication algorithm.			
		OR			
8	a)	What is cache memory? Also, explain its	L4	CO4	7 M
		operation.	۱ ک		, 141
	b)	Analyze the concept of virtual memory with	L4	CO4	7 M
	0)		上十		/ 1 V1
		the help of an example.			

UNIT-V									
9	a)	What do you mean by strobe control?	L2	CO4	7 M				
		Explain its data transfer from source and							
		destination initiation.							
	b)	Demonstrate daisy chaining priority	L3	CO4	7 M				
		method.							
OR									
10	a)	What is pipelining? Explain how processing	L3	CO4	7 M				
		is done in the pipelining.							
	b)	Explain how the instruction pipeline works.	L4	CO4	7 M				